PROPRIETE DES PRODUITS EN CROIX EGAUX : UNE PREUVE

Le but de cette activité est de prouver la propriété suivante :

Propriété:

Soient a, b, c et d sont des nombres relatifs avec $b \neq 0$ et $d \neq 0$

• Si
$$\frac{a}{b} = \frac{c}{d}$$
, alors $a \times d = b \times c$

• Si
$$a \times d = b \times c$$
 alors $\frac{a}{b} = \frac{c}{d}$

Pour cela, nous allons procéder en deux temps.

1) Montrons que « Si $\frac{a}{b} = \frac{c}{d}$, alors $a \times d = b \times c$ »

Preuve:

• Soient a, b, c et d des nombres relatifs avec $b \neq 0$ et $d \neq 0$

Si $\frac{a}{b} = \frac{c}{d}$ alors le tableau ci-contre est

		_,
а	С	
b	d	

Ainsi, si l'on désigne par k le

Et alors, on a bien $\mathbf{a} \times \mathbf{d} = \dots \times \mathbf{d} = \mathbf{b} \times \dots = \mathbf{b} \times \dots$

D'après	D'après

Donc le nombre q recherché est $\frac{a}{b}$ (Ce qui prouve l'égalité)

2) Montrons que « Si $a \times d = b \times c$ alors $\frac{a}{b} = \frac{c}{d}$ »

Preuve:

• Soient a, b, c et d des nombres relatifs tels que $\mathbf{a} \times \mathbf{d} = \mathbf{b} \times \mathbf{c}$ avec $b \neq 0$ et $d \neq 0$

On a alors $\frac{a}{b} = \frac{a \times d}{b \times d}$ D'après D'après D'après

Ce qui implique nécessairement $\frac{a}{b} = \frac{c}{d}$ D'après ...

Exemple:

Question: Les nombres $\frac{2,1}{3,5}$ et $\frac{4,1}{6,9}$ sont-ils égaux? Justifiez.

- Le premier produit en croix est $2,1 \times 6,9$; il donne 14,49.
- Le second produit en croix est 3.5×4.1 ; il donne 14.35.

Les produits en croix ne sont pas égaux donc les nombres ne sont pas égaux.

■ A vous de jouer : Les nombres $\frac{14,5}{25}$ et $\frac{-11,6}{-20}$ sont-ils égaux ? Justifiez.